Derangements in HUWE1/c-MYC pathway confer sensitivity to the BET bromodomain inhibitor GS-626510 in uterine cervical carcinoma
Document Type
Article
Publication Title
Gynecologic oncology
Abstract
OBJECTIVE: Whole-exome-sequencing (WES) studies reported c-MYC gene-amplification and HUWE1 gene deletion/mutations in a significant number of cervical-cancer-patients (CC) suggesting HUWE1/c-MYC pathway as potential therapeutic target. We investigated HUWE1/c-MYC expression in fresh-frozen-CC and the activity of the novel BET inhibitor GS-626510 (Gilead-Science-Inc) against primary WES CC-cultures and CC-xenografts. METHODS: HUWE1 and c-MYC expression were evaluated by qRT-PCR in 23 CC including 12 fresh-frozen-tumor-tissues and 11 primary-cell-lines. c-Myc expression was also evaluated by Western-Blot (WB) and fluorescence-in-situ-hybridization (FISH) in all 11 fully sequenced primary-CC-cell-lines. Primary tumors were evaluated for sensitivity to GS-626510 in-vitro using proliferation and viability-assays. siRNA experiments were used to evaluate the effect of HUWE1 silencing on primary-CC-cell-line growth and sensitivity to GS-626510. Finally, the in-vivo activity of GS-626510 was studied in CC-CVX8-mouse-xenografts. RESULTS: Fresh-frozen-CC and primary-CC-cell-lines overexpressed c-MYC when compared to normal tissues (p = .01). FISH demonstrated amplification of c-MYC in 9/11 (82%) of the primary-CC-cell-lines. Cell-lines with derangements in HUWE1/c-MYC pathway were highly sensitive to GS-626510, with a dose-response decrease in cell proliferation and viability. siRNA silencing of HUWE1 significantly increased c-MYC expression and CC cell-proliferation and enhanced the in-vitro sensitivity to GS-626510. Twice-daily oral doses of GS-626510 were well tolerated in-vivo and highly effective in decreasing tumor-growth (p = .004) and increasing survival (p = .004) of CC-CVX8 xenografts. CONCLUSIONS: Downregulation/inactivation of HUWE1 may increase c-MYC expression and proliferation in primary-CC-cell-lines. GS-626510 may represent a novel, potentially highly effective therapeutic agent against CC overexpressing c-MYC and/or harboring HUWE1 mutations. Clinical studies with BET inhibitor in CC-patients harboring radiation/chemotherapy-resistant disease are warranted.
First Page
769
Last Page
775
DOI
10.1016/j.ygyno.2020.06.484
Publication Date
9-1-2020
Recommended Citation
Bonazzoli, Elena; Bellone, Stefania; Zammataro, Luca; Gnutti, Barbara; Guglielmi, Adele; Pelligra, Silvia; Nagarkatti, Nupur; Manara, Paola; Tymon-Rosario, Joan; Zeybek, Burak; Altwerger, Gary; Menderes, Gulden; Han, Chanhee; Ratner, Elena; Silasi, Dan-Arin; Huang, Gloria S.; Andikyan, Vaagn; Azodi, Masoud; Schwartz, Peter E.; and Santin, Alessandro D., "Derangements in HUWE1/c-MYC pathway confer sensitivity to the BET bromodomain inhibitor GS-626510 in uterine cervical carcinoma" (2020). Obstetrics and Gynecology. 105.
https://scholar.bridgeporthospital.org/obgyn/105
Identifier
32600791 (pubmed); NIHMS1607507 (mid); PMC8253557 (pmc); 10.1016/j.ygyno.2020.06.484 (doi); S0090-8258(20)32299-X (pii)